Part Number Hot Search : 
SD220 LM3843AN HSL285 MZT3308 A1203 10H100C X1637 150MC
Product Description
Full Text Search
 

To Download MCP6L71RT-EMS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MCP6L71/1R/2/4
2 MHz, 150 A Op Amps
Features
* * * * * * Gain Bandwidth Product: 2 MHz (typical) Supply Current: IQ = 150 A (typical) Supply Voltage: 2.0V to 6.0V Rail-to-Rail Input/Output Extended Temperature Range: -40C to +125C Available in Single, Dual and Quad Packages
Description
The Microchip Technology Inc. MCP6L71/1R/2/4 family of operational amplifiers (op amps) supports general purpose applications. The combination of rail-to-rail input and output, low quiescent current and bandwidth fit into many applicaitons. This family has a 2 MHz Gain Bandwidth Product (GBWP) and a low 150 A per amplifier quiescent current. These op amps operate on supply voltages between 2.0V and 6.0V, with rail-to-rail input and output swing. They are available in the extended temperature range.
Typical Applications
* * * * * Portable Equipment Photodiode Amplifier Analog Filters Notebooks and PDAs Battery Powered Systems
Package Types
MCP6L71 SOT-23-5
VOUT 1 VSS 2 VIN+ 3
Design Aids
* * * * FilterLab(R) Software MAPS (Microchip Advanced Part Selector) Analog Demonstration and Evaluation Boards Application Notes
MCP6L71R SOT-23-5
5 VDD VOUT 1 VDD 2 4 VIN- VIN+ 3 4 VIN- 5 VSS
Typical Application
R1 VIN R3 VREF MCP6L71 Inverting Amplifier R2 VOUT
MCP6L71 SOIC, MSOP
NC 1 VIN- 2 VIN+ 3 VSS 4
MCP6L72 SOIC, MSOP
8 VDD 7 VOUTB 6 VINB- 5 VINB+
8 NC VOUTA 1 7 VDD VINA- 2 6 VOUT VINA+ 3 5 NC VSS 4
MCP6L74 SOIC, TSSOP
VOUTA 1 VINA- 2 VINA+ 3 VDD 4 VINB+ 5 VINB- 6 VOUTB 7 14 VOUTD 13 VIND- 12 VIND+ 11 VSS 10 VINC+ 9 VINC- 8 VOUTC
(c) 2009 Microchip Technology Inc.
DS22145A-page 1
MCP6L71/1R/2/4
NOTES:
DS22145A-page 2
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
1.0
1.1
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. See Section 4.1.2 "Input Voltage and Current Limits".
VDD - VSS ........................................................................7.0V Current at Input Pins ....................................................2 mA Analog Inputs (VIN+ and VIN-) .. VSS - 1.0V to VDD + 1.0V All other Inputs and Outputs .......... VSS - 0.3V to VDD + 0.3V Difference Input Voltage ...................................... |VDD - VSS| Output Short Circuit Current ................................ Continuous Current at Output and Supply Pins ............................30 mA Storage Temperature ................................... -65C to +150C Junction Temperature (TJ) .........................................+150C ESD Protection On All Pins (HBM/MM) ................ 4 kV/400V
1.2
Specifications
DC ELECTRICAL SPECIFICATIONS
TABLE 1-1:
Electrical Characteristics: Unless otherwise indicated, TA = +25C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2 and RL = 10 k to VL. (Refer to Figure 1-1). Parameters Input Offset Input Offset Voltage Input Offset Temperature Drift Power Supply Rejection Ratio Input Bias Current and Impedance Input Bias Current IB IB IB Input Offset Current Common Mode Input Impedance Differential Input Impedance Common Mode Common Mode Input Voltage Range Common Mode Rejection Ratio Open-Loop Gain DC Open-Loop Gain (Large Signal) Output Maximum Output Voltage Swing VOL VOH Output Short Circuit Current Note 1: ISC -- 4.980 -- -- -- 25 0.020 -- -- V V mA G = +2 V/V, 0.5V input overdrive G = +2 V/V, 0.5V input overdrive AOL -- 105 -- dB VOUT = 0.2V to 4.8V, VCM = VSS VCMR CMRR -0.3 -- -- 91 +5.3 -- V dB VCM = -0.3V to 5.3V IOS ZCM ZDIFF -- -- -- -- -- -- 1 50 2000 1 1013||6 1013||3 -- -- -- -- -- -- pA pA pA pA ||pF ||pF TA= +85C TA= +125C VOS VOS/TA PSRR -4 -- -- 1 1.3 89 +4 -- -- mV V/C TA = -40C to +125C, dB Sym Min (Note 1) Typ Max (Note 1) Units Conditions
For design guidance only; not tested.
(c) 2009 Microchip Technology Inc.
DS22145A-page 3
MCP6L71/1R/2/4
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA = +25C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2 and RL = 10 k to VL. (Refer to Figure 1-1). Parameters Power Supply Supply Voltage Quiescent Current per Amplifier Note 1: VDD IQ 2.0 50 -- 150 6.0 240 V A IO = 0 Sym Min (Note 1) Typ Max (Note 1) Units Conditions
For design guidance only; not tested.
TABLE 1-2:
AC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = +25C, VDD = +2.0V to +5.5V, VSS = GND, VCM = VDD2, VOUT VDD/2, VL = VDD/2, RL = 10 k to VL and CL = 60 pF. (Refer to Figure 1-1). Parameters AC Response Gain Bandwidth Product Phase Margin Slew Rate Noise Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Eni eni ini -- -- -- 4.6 19 3 -- -- -- VP-P nV/Hz fA/Hz f = 0.1 Hz to 10 Hz f = 10 kHz f = 1 kHz GBWP PM SR -- -- -- 2.0 65 0.9 -- -- -- MHz V/s G = +1 V/V Sym Min Typ Max Units Conditions
TABLE 1-3:
TEMPERATURE SPECIFICATIONS
Parameters Sym TA TA TA JA JA JA JA JA Min -40 -40 -65 -- -- -- -- -- Typ -- -- -- 256 163 206 120 100 Max +125 +125 +150 -- -- -- -- -- Units C C C C/W C/W C/W C/W C/W Note 1 Conditions
Electrical Characteristics: Unless otherwise indicated, VDD = +2.0V to +5.5V and VSS = GND. Temperature Ranges Specified Temperature Range Operating Temperature Range Storage Temperature Range Thermal Package Resistances Thermal Resistance, 5L-SOT-23 Thermal Resistance, 8L-SOIC Thermal Resistance, 8L-MSOP Thermal Resistance, 14L-SOIC Thermal Resistance, 14L-TSSOP
Note 1: The Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150C.
DS22145A-page 4
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
1.3 Test Circuits
CF 6.8 pF RG 100 k VP VIN+ MCP6L7X VIN- VM RG 100 k RF 100 k CF 6.8 pF RL 10 k VOUT CL 60 pF CB1 100 nF RF 100 k VDD VDD/2 The circuit used for most DC and AC tests is shown in Figure 1-1. This circuit can independently set VCM and VOUT; see Equation 1-1. Note that VCM is not the circuit's common mode voltage ((VP + VM)/2), and that VOST includes VOS plus the effects (on the input offset error, VOST) of temperature, CMRR, PSRR and AOL.
EQUATION 1-1:
G DM = R F R G V CM = ( V P + V DD 2 ) 2 V OST = V IN- - V IN+ V OUT = ( V DD 2 ) + ( V P - V M ) + V OST ( 1 + G DM ) Where: GDM = Differential Mode Gain VCM = Op Amp's Common Mode Input Voltage VOST = Op Amp's Total Input Offset Voltage (V/V) (V) (mV)
CB2 1 F
VL
FIGURE 1-1: AC and DC Test Circuit for Most Specifications.
(c) 2009 Microchip Technology Inc.
DS22145A-page 5
MCP6L71/1R/2/4
NOTES:
DS22145A-page 6
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 10 k to VL and CL = 60 pF.
300 250 200 150 100 50 0 -50 -100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.4 -0.2 1.4 1.6 1.8 2.0 2.2 2.4 TA = +125C TA = +85C TA = +25C TA = -40C Common Mode Range (V) Input Offset Voltage (V) VDD = 2.0V Representitive Part
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
VCMRH - VDD
One Wafer Lot
VCMRL - VSS
-50
-25
Common Mode Input Voltage (V)
0 25 50 75 Ambient Temperature (C)
100
125
FIGURE 2-1: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 2.0V.
300 Input Offset Voltage (V) 250 200 150 100 50 0 -50 -100 0.5 2.0 3.5 -0.5 5.0 0.0 1.0 1.5 2.5 3.0 4.0 4.5 5.5 6.0 Common Mode Input Voltage (V) TA = +85C TA = +25C TA = -40C TA = +125C
FIGURE 2-4: Input Common Mode Range Voltage vs. Ambient Temperature.
120 PSRR, CMRR (dB)
VDD = 5.5V Representitive Part
110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 Ambient Temperature (C) PSRR (V CM = VSS) CMRR (V CM = -0.3V to +5.3V)
FIGURE 2-2: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V.
300 Input Offset Voltage (V) 250 200 150 100 50 0 -50 -100 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V) VDD = 2.0V VDD = 5.5V
FIGURE 2-5: Temperature.
CMRR, PSRR vs.
CMRR, PSRR (dB)
VCM = VSS Representative Part
110 100 90 80 70 60 50 40 30 20 1 10 100 1k 10k 100k 1M 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 Frequency (Hz) PSRR- PSRR+ CMRR
FIGURE 2-3: Output Voltage.
Input Offset Voltage vs.
FIGURE 2-6: Frequency.
CMRR, PSRR vs.
(c) 2009 Microchip Technology Inc.
DS22145A-page 7
MCP6L71/1R/2/4
Note: Unless otherwise indicated, TA = +25C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 10 k to VL and CL = 60 pF.
1.E-02 10m 1.E-03 1m 1.E-04 100 1.E-05 10 1.E-06 1 100n 1.E-07 10n 1.E-08 1n 1.E-09 100p 1.E-10 10p 1.E-11 1p 1.E-12 6 Input, Output Voltage (V) 5 4 3 2 1 0 -1 Time (1 ms/div) VIN VOUT VDD = 5.0V G = +2 V/V
Input Current Magnitude (A)
+125C +85C +25C -40C
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Input Voltage (V)
FIGURE 2-7: Voltage.
120 Open-Loop Gain (dB) 100 80 60 40 20 0 -20 1.E+01
Input Current vs. Input
FIGURE 2-10: The MCP6L71/1R/2/4 Show No Phase Reversal.
250 Open-Loop Phase () Quiescent Current (A/amplifier) 200 150 100 50 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) TA = +125C TA = +85C TA = +25C TA = -40C
0 -30 -60 Phase -90 -120 -150 -180 -210 1.E+04 0.1 1 10 100 1k 10k 100k 1M 10M Frequency (Hz) 1.E+07 1.E-01 1.E+00 1.E+02 1.E+03 1.E+05 1.E+06
Gain
FIGURE 2-8: Frequency.
1,000
Open-Loop Gain, Phase vs.
FIGURE 2-11: Supply Voltage.
35 Ouptut Short-Circuit Current (mA) 30 25 20 15 10 5 0
Quiescent Current vs.
Input Noise Voltage Density (nV/Hz)
100
TA = +125C TA = +85C TA = +25C TA = -40C
10 0.1 1 10 100 1k 10k 100k 1M 1.E- 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 01 0 1 Frequency (Hz) 4 2 3 5 6
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V)
FIGURE 2-9: vs. Frequency.
Input Noise Voltage Density
FIGURE 2-12: Output Short Circuit Current vs. Supply Voltage.
DS22145A-page 8
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
Note: Unless otherwise indicated, TA = +25C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 10 k to VL and CL = 60 pF.
50 45 40 35 30 25 20 15 10 5 0 0.1 1.8
VOL - VSS -IOUT
Ratio of Output Headroom to Output Current (mV/mA)
1.6 Slew Rate (V/s) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Falling Edge
V DD = 5.5V
V DD = 2.0V Rising Edge
VDD - VOH IOUT
1 Output Current Magnitude (mA)
10
-50
-25
0 25 50 75 Ambient Temperature (C)
100
125
FIGURE 2-13: Ratio of Output Voltage Headroom vs. Output Current Magnitude.
5.0 4.5 Output Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Time (5 s/div) G = +1 V/V VDD = 5.0V
FIGURE 2-16: Temperature.
10 Maximum Output Voltage Swing (V P-P)
Slew Rate vs. Ambient
VDD = 5.5V VDD = 2.0V 1
0.1 1.E+04 1.E+03 1.E+06 1k 10k 100k Frequency (Hz) 1M 10M 1.E+07 1.E+05
FIGURE 2-14: Pulse Response.
Large Signal Non-inverting
FIGURE 2-17: Maximum Output Voltage Swing vs. Frequency.
G = +1 V/V Output Voltage (10 mV/div)
Time (2 s/div)
FIGURE 2-15: Pulse Response.
Small Signal Non-inverting
(c) 2009 Microchip Technology Inc.
DS22145A-page 9
MCP6L71/1R/2/4
NOTES:
DS22145A-page 10
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
3.0 PIN DESCRIPTIONS
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).
TABLE 3-1:
PIN FUNCTION TABLE FOR SINGLE OP AMPS
MCP6L71R Symbol Description Inverting Input Non-inverting Input Negative Power Supply Analog Output Positive Power Supply No Internal Connection SOT-23-5 4 3 5 1 2 -- VIN- VIN+ VSS VOUT VDD NC
MCP6L71 MSOP, SOIC 2 3 4 6 7 1,5,8 SOT-23-5 4 3 2 1 5 --
TABLE 3-2:
MCP6L72 MSOP, SOIC 1 2 3 8 5 6 7 -- -- -- 4 -- -- --
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS
MCP6L74 Symbol SOIC, TSSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 VOUTA VINA- VINA+ VDD VINB+ VINB- VOUTB VOUTC VINC- VINC+ VSS VIND+ VIND- VOUTD Analog Output (op amp A) Inverting Input (op amp A) Non-inverting Input (op amp A) Positive Power Supply Non-inverting Input (op amp B) Inverting Input (op amp B) Analog Output (op amp B) Analog Output (op amp C) Inverting Input (op amp C) Non-inverting Input (op amp C) Negative Power Supply Non-inverting Input (op amp D) Inverting Input (op amp D) Analog Output (op amp D) Description
3.1
Analog Outputs
3.3
Power Supply Pins
The output pins are low impedance voltage sources.
3.2
Analog Inputs
The non-inverting and inverting inputs are high impedance CMOS inputs with low bias currents.
The positive power supply (VDD) is 2.0V to 6.0V higher than the negative power supply (VSS). For normal operation, the other pins are at voltages between VSS and VDD. Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply. VDD will need bypass capacitors.
(c) 2009 Microchip Technology Inc.
DS22145A-page 11
MCP6L71/1R/2/4
NOTES:
DS22145A-page 12
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
4.0 APPLICATION INFORMATION
4.1.3 NORMAL OPERATIONS
The MCP6L71/1R/2/4 family of op amps is manufactured using Microchip's state of the art CMOS process, specifically designed for low cost, low power and general purpose applications. The low supply voltage, low quiescent current and wide bandwidth make the MCP6L71/1R/2/4 ideal for battery powered applications. The input stage of the MCP6L71/1R/2/4 op amps uses two differential CMOS input stages in parallel. One operates at low common mode input voltage (VCM), while the other at high VCM. With this topology, and at room temperature, the device operates with VCM up to 0.3V above VDD and 0.3V below VSS (typically at +25C). The transition between the two input stage occurs when VCM = VDD - 1.1V. For the best distortion and gain linearity, with non-inverting gains, avoid this region of operation.
4.1
4.1.1
Rail-to-Rail Inputs
PHASE REVERSAL
The MCP6L71/1R/2/4 op amps are designed to prevent phase inversion when the input pins exceed the supply voltages. Figure 2-10 shows an input voltage exceeding both supplies without any phase reversal.
4.2
Rail-to-Rail Output
4.1.2
INPUT VOLTAGE AND CURRENT LIMITS
The output voltage range of the MCP6L71/1R/2/4 op amps is VDD - 20 mV (minimum) and VSS + 20 mV (maximum) when RL = 10 k is connected to VDD/2 and VDD = 5.0V. Refer to Figure 2-13 for more information.
In order to prevent damage and/or improper operation of these amplifiers, the circuit they are in must limit the currents (and voltages) at the input pins (see Section 1.1 "Absolute Maximum Ratings "). Figure 4-1 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (VIN+ and VIN-) from going too far below ground, and the resistors R1 and R2 limit the possible current drawn out of the input pins. Diodes D1 and D2 prevent the input pins (VIN+ and VIN-) from going too far above VDD, and dump any currents onto VDD. VDD D1 V1 R1 V2 R2 D2 MCP6L7X VOUT
4.3
Capacitive Loads
Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. When driving large capacitive loads with these op amps (e.g., > 100 pF when G = +1), a small series resistor at the output (RISO in Figure 4-2) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load. RG RF RISO VOUT CL RN MCP6L7X
R3 VSS - (minimum expected V1) 2 mA VSS - (minimum expected V2) R2 > 2 mA R1 >
FIGURE 4-2: Output Resistor, RISO Stabilizes Large Capacitive Loads.
Bench measurements are helpful in choosing RISO. Adjust RISO so that a small signal step response (see Figure 2-15) has reasonable overshoot (e.g., 4%).
FIGURE 4-1: Inputs.
Protecting the Analog
A significant amount of current can flow out of the inputs (through the ESD diodes) when the common mode voltage (VCM) is below ground (VSS); see Figure 2-7. Applications that are high impedance may need to limit the usable voltage range.
(c) 2009 Microchip Technology Inc.
DS22145A-page 13
MCP6L71/1R/2/4
4.4 Supply Bypass
Guard Ring VIN- VIN+ With this family of operational amplifiers, the power supply pin (VDD for single supply) should have a local bypass capacitor (i.e., 0.01 F to 0.1 F) within 2 mm for good, high frequency performance. It also needs a bulk capacitor (i.e., 1 F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts.
4.5
Unused Amplifiers
An unused op amp in a quad package (MCP6L74) should be configured as shown in Figure 4-3. These circuits prevent the output from toggling and causing crosstalk. In Circuit A, R1 and R2 produce a voltage within its output voltage range (VOH, VOL). The op amp buffers this voltage, which can be used elsewhere in the circuit. Circuit B uses the minimum number of components and operates as a comparator. 1/4 MCP6L74 (A) VDD R1 VDD VREF 1/4 MCP6L74 (B) VDD
FIGURE 4-4: Layout.
1.
Example Guard Ring
2.
R2
For Inverting Gain and Transimpedance Amplifiers (convert current to voltage, such as photo detectors): a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as the op amp (e.g., VDD/2 or ground). b) Connect the inverting pin (VIN-) to the input with a wire that does not touch the PCB surface. Non-inverting Gain and Unity Gain Buffer: a) Connect the guard ring to the inverting input pin (VIN-). This biases the guard ring to the common mode input voltage. b) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface.
4.7
V REF R2 = V DD -----------------R1 + R2
Application Circuits
INVERTING INTEGRATOR
4.7.1
FIGURE 4-3:
Unused Op Amps.
4.6
PCB Surface Leakage
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is 1012. A 5V difference would cause 5 pA of current to flow. This is greater than the MCP6L71/1R/2/4 family's bias current at +25C (1 pA, typical). The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. Figure 4-4 shows an example of this type of layout.
An inverting integrator is shown in Figure 4-5. The circuit provides an output voltage that is proportional to the negative time-integral of the input. The additional resistor R2 limits DC gain and controls output clipping. To minimize the integrator's error for slow signals, the value of R2 should be much larger than the value of R1. +
MCP6L71
VOUT
_ C1 VIN R1 R2 1V OUT = - -----------R1 C1 R2 R1
0VIN dt
t
FIGURE 4-5:
Inverting Integrator.
DS22145A-page 14
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
5.0 DESIGN TOOLS
5.4 Application Notes
Microchip provides the basic design tools needed for the MCP6L71/1R/2/4 family of op amps. The following Microchip Application Notes are available on the Microchip web site at www.microchip. com/ appnotes and are recommended as supplemental reference resources. * ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821 * AN722: "Operational Amplifier Topologies and DC Specifications", DS00722 * AN723: "Operational Amplifier AC Specifications and Applications", DS00723 * AN884: "Driving Capacitive Loads With Op Amps", DS00884 * AN990: "Analog Sensor Conditioning Circuits - An Overview", DS00990
5.1
FilterLab(R) Software
Microchip's FilterLab(R) software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.
5.2
MAPS (Microchip Advanced Part Selector)
MAPS is a software tool that helps efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/ maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Data sheets, Purchase, and Sampling of Microchip parts.
5.3
Analog Demonstration and Evaluation Boards
Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at www.microchip.com/ analogtools. Some boards that are especially useful are: MCP6XXX Amplifier Evaluation Board 1 MCP6XXX Amplifier Evaluation Board 2 MCP6XXX Amplifier Evaluation Board 3 MCP6XXX Amplifier Evaluation Board 4 Active Filter Demo Board Kit 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board, P/N SOIC8EV * 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N SOIC14EV * * * * * * *
(c) 2009 Microchip Technology Inc.
DS22145A-page 15
MCP6L71/1R/2/4
NOTES:
DS22145A-page 16
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
6.0
6.1
PACKAGING INFORMATION
Package Marking Information
5-Lead SOT-23 (MCP6L71, MCP6L71R) Example:
Device
Code WGNN WFNN
XXNN
MCP6L71 MCP6L71R
WG25
Note: Applies to 5-Lead SOT-23
8-Lead MSOP (MCP6L71, MCP6L72) XXXXXX YWWNNN
Example: 6L72E 911256
8-Lead SOIC (150 mil) (MCP6L71, MCP6L72) XXXXXXXX XXXXYYWW NNN
Example: MCP6L72E e3 SN^^0911 256
Legend: XX...X Y YY WW NNN
e3
* Note:
Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
(c) 2009 Microchip Technology Inc.
DS22145A-page 17
MCP6L71/1R/2/4
Package Marking Information (Continued)
14-Lead SOIC (150 mil) (MCP6L74) Example:
XXXXXXXXXX XXXXXXXXXX YYWWNNN
MCP6L74 e3 E/SL^^ 0911256
14-Lead TSSOP (MCP6L74)
Example:
XXXXXXXX YYWW NNN
6L74EST 0911 256
DS22145A-page 18
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU 27 >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
b
N
E E1
1 e
2
3
e1 D
A
A2
c
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F %6& %6& 0,1 0,//,0(7(56 120 0$;
/HDG :LGWK E 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
(c) 2009 Microchip Technology Inc.
DS22145A-page 19
MCP6L71/1R/2/4
/HDG 3ODVWLF 0LFUR 6PDOO 2XWOLQH 3DFNDJH 06 >0623@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1
NOTE 1 1 2 b A A2 c
e
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F
L1
0,//,0(7(56 0,1 120 %6& %6& %6& %6& 5() 0$;
L
/HDG :LGWK E 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22145A-page 20
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D e N
E E1
NOTE 1 1 2 3 b h c h
A
A2
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
(c) 2009 Microchip Technology Inc.
DS22145A-page 21
MCP6L71/1R/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
DS22145A-page 22
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 6/ 1DUURZ
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1 NOTE 1 1 2 b 3 e h h A2 c
A
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
PP SHU VLGH
%
(c) 2009 Microchip Technology Inc.
DS22145A-page 23
MCP6L71/1R/2/4
1RWH
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
DS22145A-page 24
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
/HDG 3ODVWLF 7KLQ 6KULQN 6PDOO 2XWOLQH 67
1RWH
PP %RG\ >76623@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1
NOTE 1 12 e b A A2 c
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 0ROGHG 3DFNDJH /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F
L1
0,//,0(7(56 0,1 120 %6& %6& 0$;
L
5()
/HDG :LGWK E 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
(c) 2009 Microchip Technology Inc.
DS22145A-page 25
MCP6L71/1R/2/4
NOTES:
DS22145A-page 26
(c) 2009 Microchip Technology Inc.
MCP6L71/1R/2/4
APPENDIX A: REVISION HISTORY
Revision A (March 2009)
* Original data sheet release.
(c) 2008 Microchip Technology Inc.
DS22145A-page 27
MCP6L71/1R/2/4
NOTES:
DS22145A-page 28
(c) 2008 Microchip Technology Inc.
MCP6L71/1R/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device
-
X
/XX Package
Examples:
a) Tape and Reel, 5LD SOT-23 package. MCP6L71T-E/MS: Tape and Reel, 8LD MSOP package. MCP6L71T-E/SN: Tape and Reel, 8LD SOIC package. MCP6L71RT-E/OT: Tape and Reel, 5LD SOT-23 package. MCP6L72T-E/MS: Tape and Reel, 8LD MSOP package. MCP6L72T-E/SN: Tape and Reel, 8LD SOIC package. MCP6L74T-E/SL: MCP6L74-E/ST: Tape and Reel, 14LD SOIC package. Tape and Reel, 14LD TSSOP package. MCP6L71T-E/OT:
Temperature Range
b) c)
Device:
MCP6L71T: MCP6L71RT: MCP6L72T: MCP6L74T:
Single Op Amp (Tape and Reel) (MSOP, SOIC, SOT-23-5) Single Op Amp (Tape and Reel) (SOT-23-5) Dual Op Amp (Tape and Reel) (MSOP, SOIC) Quad Op Amp (Tape and Reel) (SOIC, TSSOP)
a)
a) b)
Temperature Range:
E
= -40C to +125C
a) b)
Package:
OT = Plastic Small Outline Transistor (SOT-23), 5-lead (MCP6L71, MCP6L71R) MS = Plastic MSOP, 8-lead SN = Plastic SOIC, (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14-lead ST = Plastic TSSOP (4.4 mm Body), 14-lead
(c) 2009 Microchip Technology Inc.
DS22145A-page 29
MCP6L71/1R/2/4
NOTES:
DS22145A-page 30
(c) 2009 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
(c) 2009 Microchip Technology Inc.
DS22145A-page 31
Worldwide Sales and Service
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
02/04/09
DS22145A-page 32
(c) 2009 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of MCP6L71RT-EMS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X